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Structure theorems for rings R with involution whose symmetric elements 
satisfy a polynomial identity are obtained. In particular, it is shown that such 
rings satisfy polynomial identities. 

1. Introduction. A ring R is said to be a ring with an involution if there 
exists a mapping *: R ~ R such that for every a, b ~ R: 

1) a * *  = a 

2) (a + b)* = b* + a* 
3) (ab)* = b'a*.  
The symmetric elements of R with respect to the involution (*) is the set 

S = {x ~ R Ix* = x}; and the anti-symmetric elements is the set K = {x ~ R Ix* 
- -  . ,~} • 

The problem dealt with in this paper is the question: whether a ring R with 
an involution whose symmetric (or antisymmetric) elements satisfy a polynomial 
identity--necessarily also satisfies a polynomial identity. This has been shown 
to be true for simple rings as well as for semi-prime algebras of characteristic 
# 2; moreover, if the identity of S is of degree d then the degree of the identity 
of  R is <4d .  (Martindale [61, Herstein [21, [31). In section 3 we prove this 
result for arbitrary rings (without the bound 4d), and if R is a semi-prime algebra 
then the degree of the identity of R is < 2d. By studying the nil subrings of R 
we obtain that R/NI(R) satisfy an identity of degree < 2d 2, where NI(R) is the 
union of  all nilpotent ideals of R.  From which we conclude that every ring R 
of  this type satisfies an identity. 

2. Nil subsets of R. By a polynomial identity of S we mean a polynomial 
P[Xl,"',Xk] in non-commutative indeterminates x~, for which at least one of 
the coefficients of a monomial of highest degree is 1, and which vanishes identi- 
cally for all substitutions xi = si ~ S. The proof can be extended to more general 
identities, following [11, but for the sake of simplicity we restrict ourselves to 
the above polynomials. By a process of linearization we can get, and therefore 
we assume that p[x I has the form: 

(1.1) p[xt , '" ,x2] = XlX2... xd + ~,do)xll... xl ~ 
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where (il,...,id) ranges over all permutations of (1,2,...,d) different from 
identity. 

REMARK A. The property of the vanishing identity for the symmetric elements 
may not be invariant under homomorphisms which preserves the involution 
since the homomorphic image RIP of R may have more symmetric elements than 
those inherited fron R.  This is not the case for algebras of over a field of charac- 
teristic # 2, since then if r*= r(P) then r * - r  = p e P  is an anti-symmetric 
element and hence (r + p/2)* = (r + p/2) with r + p/2 - r(mod P). To overcome this 
difficulty we require less, and denote by S the set of all the symmetric elements 
of the form {a + a*; ab* + ba*,[ a , b~R } ,  and K = {a - a*;ab* - ba*} and 
assume that this restricted set S satisfies the identity p[x] = 0. For this set S (and 
K) it is evident that the set (S + P)/P is the restricted set of symmetric elements 
of R/P, and p[x] = 0 will vanish also in RIP. We refer henceforth only to the 
elements of this subset as to the symmetric elements of R.  

We shall consider only identities of the symmetric elements S, but the proof 
for the anti-symmetric elements K is similar and suitable remarks of the changes 
required in the proofs will be enclosed. 

We assume henceforth, that R is a ring with an involution * whose symmetric 
elements S satisfy the polynomial p[x] = 0 given in (1.1). 

Our first result is: 

LEMUA 1. Let P be a two-sided ideal in R and let U be a subset of  R such 
that U* = {u*[u~ U} = U and U"~_P then Ud generates a nilpotent ideal in 
R m o d P .  

Proof. Following [1], we consider for k > d the sets 

Uk-IR, Uk-IRU, U~-zRU,'U~-2RU2,.. . ,  

namely, the sets: T2~-1 = Uk-JRU ~-1, T2j = Uk-IRU ~, j = 1 ,2 , . . . ,k .  Since 
U* = U, it follows that T ' j -1 = T2(k-j+l)-l, T~ = T2(k--~. Consider the sym- 
metric elements(1) s~=t~ + t* where fl is taken arbitrarily from T~. First note 

that tdj e RUkR if i > j .  
For every permutation (il, ...,i~) of (1,2, . . . ,d) we have: 

(2.1) st1" s t . ' "  st., = (h, + t*,)... (t~, + h*) 

Etch,,, * "'" fl*¢~,mod(RU ~R) 

where the sum ranges over all permutations (ia(1),...,iata)) of (i l , . . . , ia)  and 
r = 0 ,1 , . - . ,d .  Indeed, since ia<=d it follows that t~a*e T~x* = Tj~ and j~ > d,  
since we assumed k > d and then for even ia = 2j < d, ja = 2(k - j)  >_- 2 k -  d > d 
and for odd i ~ = 2 j - l < d ,  J x = 2 ( k - J +  1 ) -  1>__ 2 k - d >  d; this 

Q) For the anti-symmetric case we take st = ti-t'~. 
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implies that t~t,, e RU*R for Jx > d > i~, and t.*,4 e Tj~. Hence in the expansion 
of  the left side of  (2.1) we get modRU*R only the terms on the right. Next, we 
show that: 

(2.2) sty"" sid UhR -- t~, "" tid Uh R (rood RUkR) 

where h = d/2 i f  d is even, and h = (d + 1)/2 if  d is odd. This follows from the 
fact that t*U~R ~_ UJRUk-j+hR, where i = 2j or i = 2j - 1 ; thus, we always 

have k - j  + h > k since i < d, and h = d/2 o r  = ( d  + 1 ) / 2 .  Finally, 
ti,. . ,  ti~UhR =_ RUkR i f  ( i t , . . . ,  Me) # (1, 2,. . . ,  d) since some pair (i x, ix+ ~) must 
satisfy ix+ 1 < i x and so tittle+, eRUkR.  

Hence substituting xi = st in p[x] of (1.1) and multiplying on the right by 
UhR we get, in view of  the preceding remarks, that t ~ t2 ... t aUhR = p[sl, ..., Sd] UhR 
-0 (RUkR) .  I f  we now let t, range over the set T~, we obtain T~T 2 ... TaUhR 
= (Uk-IR)aU"+hR ~_ RUkR where 2r' = d if  d is even and 2(r' + 1) - 1 = d if 
d is odd, and in both cases we conclude that (RUk-IR)  a+* ~_ RU*R if  k > d. 

Now let U'  be the minimal power of  U which generates a nilpotent ideal in 
R m o d P ,  then r _-.6 m; from the last relation we conclude that r < d, since if 
r > d then (RU'-~R) a+l ~_ RU'R and therefore R U ' - i R  will also be nilpotent 
mod P .  

The preceding lemma will yield 

THEOREM 2. The nil radical U(R) o f  R is equal to the lower radical L(R) 
and L(R) a ~ NI(R),  where Nt (R  ) is the union of all nilpotent ideals of  R .  Thus 
i f  L(R) = O, then R has no nil ideals. 

Let s e S be a nil symmetric element, then by taking U = (s) in the preceding 
lemma and P = 0, one obtains that s d generates a nilpotent ideal in R,  hence 
sdeNl(R)  ~_ L(R).  Suppose U(R) contains a non zero nilpotent symmetric 
element which $L(R),  then it must contain a symmetric s ~ U(R), s¢ L(R) 
such that s 2 e L(R), then for every x e R, sx + x*s ~ U(R)(2) is a nil and symmetric; 
hence Lemma 1 implies that (sx + x 's )  d generates a nilpotent ideal in R and it 
follows as before that (sx + x*s) d e L(R). Then (sx) d + 1 = (sx + x ' s )  d sx e L(R), 
which means that i f (sR + L(R))[L(R) # 0 it is a nil ring of  bounded index, hence 
if  NIL(R) is the sum of  all nilpotent ideals T/L(R) in [sR + L(R)]]L(R) then 

(sR) d ~_ N ([1]). For  every T, TsR will be a right nilpotent ideal rood L(R) hence 

TsR ~ L(R), so that (sR) d+~ c_L(R). But this implies that s generates a nil- 
potent ideal modL(R) which is impossible since sCL(R),  and R/L(R) has no 
nilpotent ideals. Thus, we conclude that if U(R) ~ L(R) then S n U(R)~ L(R). 
In this case, for x e U(R), x + x* e U(R) since clearly U(R)* = U(R) and, therefore, 

x + x* eL(R) ;  and more generally x*t + t*x eL(R) ,  for x e U(R), t eR .  Choose x 
such that x $ L(R), x 2 e L(R) then x*tx = (x*t + t*x)x-O(L(R)) and x -- - x*(L(R)) 

(2) For the non-symmotric case, we take sx -- x*s. 
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it follows that (xR) 2 = - x*RxR -0(L(R))  which is impossible since U(R)/L(R) 
has no nilpotent ideals. We conclude, therefore, that U(R)= L(R). 

Now let ul, ' . . ,udsL(R) and consider the finite set U = (ut,...,ud, u*,...,u*) 
which satisfies U* = U. By the local nilpotency of L(R), it follows that 
U m = 0 for some m. It follows now by the preceding lemma that U d generates a 
nilpotent ideal, i.e., U~_ NI(R). In particular, u lu2""u~sN~(R). This being 
true for all us ~ L(R), yields that L(R) d ~_ NI(R ). 

3. Primitive images of R.  Let R be an arbitrary ring with an involution, 
and let P be a primitive ideal in R such that R/P is an irreducible ring of endo- 
morphisms of a vector space Vo over a division ring D. Then: 

L~MMA 3. One of the following holds for R: 

1) RIP has a minimal left ideal. 
2) There is a finite dimensional D-subspace W ~_ V, such that the left ideal 

L = ( 0 : W )  = {r[rW=O},  satisfies L*c_P. 
3) For every finite dimensional U ~_ V, and every v ~ U, IS n(O: U)]v q~ U + yD. 

Proof.  If  (3) does not hold, then there exists a finite dimensional U _  V, 
and v~U such that [S n ( 0 : U ) ] v ~  U+vD.  Let W =  U+vD and T=(O:U). 
By the density theorem it follows that T ~ 0 since T contains an element b such 
that bU = 0 and by ~ O. Furthermore: if  W = V then V is finite dimensional 
and hence RIP has a minimal left ideal, and if V # W, then for every 0 # a s (0: W) 
and for every r s R,  c=(ra)*b + b*(ra)~(0: U)(a) and c is symmetrical. Hence, 
it follows by our assumption that (ra)*bv= [(ra)*b + b*(ra)]v~W. Thus 
a*r*bv~ W, i.e., a*R(bv) c W, and since by # O, we have R(bv)= V so that 
a* V _~ W. Now if  a* ~ P for some a ~ (0: W) then it induces a linear transformation 
of finite rank, hence R/P has a minimal left ideal ([4], p. 75). Otherwise, a* ~P  
for every a ~ (0: W), and condition (2) is valid, as required. 

LEMMA 4. I f  R is a ring whose symmetric elements satisfy an identity, then 
every primitive image ]~ of R has a minimal left ideal. 

Proof.  Let ~ = RIP acting on V as in the preceding lemma, and we may 
assume that R acts on V. We have to consider only cases (2) and (3): in case (2), 
if  ~ has no minimal left ideal, then necessarily (V: D ) =  ~ .  Since (W: D ) <  oo, 
one can choose Wo, wl, " ' ,  wd which are D-independent and ~ W. By the density 
theorem, we can choose t~ ~ L = (0: W) such that hw I = 0 for j  # i and t~w i = wl- 1 
for i = 1,2,- . . ,d ,  then since t*~P: st = t~ + t* =- t~(modP) (n, so that 

0 = P[Sl,'",Sd]Wd = p[t,,"',ta]w a 

--_ tlt2...tdwd = W o 

(a) Or, (ra)*b-b*(ra) for the anti-symmetric case. 
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which is a contradiction, thus (V :D)<  oo and consequently R has a minimal 
left ideal. 

If  case (3) holds, then we can choose we V, and Sd, Sd-1,'",Sl e S  such that 
w, sdw, sa- 1saw,'", SR" Sk+ 1"'" SaW are D-independent and sj(s~s~+ 1 "'" saw) = 0 for 
i < j +  1. This is carried out successively. First choose w # 0, then since Sw ~= wD 
by (3) of the preceding lemma with U = 0, we choose saw ~ wD, and so independent 
of w. Suppose sd, "",Sk have been chosen satisfying the above condition, let 
U= wD + sawO + ... + Sk+lSk+2""sawD , then since IS n (0 :  U)](s~sk+ l . . .s~w) 
¢: U + SkSk+ 1"'" sawD we choose Sk- 1 ~ S c~ (0: U) such that Sk-lSk"" SdW q~ U 
+ Sk"" sdwD and this satisfies our requirements. Next we substitute these st in 
p[x] we get 0 = p[s l ' "  s j r  = sis2"" s~v ~ 0 which is a contradiction, and this 
completes the proof of the lemma. 

We are now ready to prove the first main result: 

THEOREM 5. Let R be a ring with an involution whose symmetric elements 
S satisfy p[xl, . . . ,xd] = 0 then R/L(R) satisfies an identity of  degree <= 2d; 
and R/NI(R) satisfies an identity of  degree < 2d 2 . 

Proof. Let V be an irreducible representation of R ,  and P = {r I rV = 0} 
the primitive ideal of R.  Consider first the case that P* ~ P (compare with I2] 
Lemma 25): the ring RIP contains the ideal ( P * +  P)/P and for each h~P*  
we have t* E P and therefore 

0 = P1'tl + t*, '",ta + t*] = p1'tl,...,ta] (modP),  

that is (P* + P)/P satisfies an identity of degree d. Now a non-zero ideal in a 
primitive ring is primitive, and a primitive ring which satisfy an identity is a 
central simple algebra of dimension n (<  [d/2]). Let Vo be an irreducible re- 
presentation of (P* + P)/P,  then it is also an irreducible representation of RIP 
with the same centralizer, which implies that RIP ~- HomD(Vo, Vo) but the latter 
is isomorphic with (P* + P)/P; so RIP is also a central simple algebra of di- 
mension n < [d/2] over its center and in particular RIP satisfies the standard 
identity Szd[x] = 0. (compane with 1-2], p. 228). 

Next consider the case P * ~  P ,  where then the involution of R induces an 
involution in R/P by setting d* = a* for every a ~R.  Since the symmetric ele- 
ments of R satisfies the identity p1'x] = 0, it will hold also in RIP (remark A), 
hence we may assume that R is primitive and it is an irreducible ring of endo- 
morphisms of a space VD. We shall prove first that (V:D) < d, and this we do 
by induction on d: 

It follows by Lemma 4 that R contains a minimal left ideal Re which can be 
taken to be V, and D = eRe. Let e'Re = M ,  then M # 0 and both e, e* are pri- 
mitive idempotent hence M is a one-dimensional D-space. Indeed if  v 1 v2 e e 'Re 
and D-independent then there exist r such that rvl = vl,rv2 = 0 and clearly we 
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can replace r by e ' re*  e D* which is a division ring. Now for the division ring 

D*, rox = 01 implies r ~ 0 but rv2 = 0 yields that r = 0. Impossible! We define 
in V =  Re a bilinear map: V × V--+M by setting (vl ,v2)= v~o2. Clearly this 
map is bilinear and satisfies ( rv l ,v2)= (vl,r*v2); ( v l , v 2 d ) =  (vl,v2)d, d e e R e  

and (o ld , v2 )=  d*(vlo2). It is hermitian in the sense that (vl,v2)* =(02,01), 
and regular for if  (v ,V)  = v*V = 0 then v* = 0 and hence v = 0. 

We prove that (V: D) < d by induction on d: consider first the case that there 
exist v e Re  such that (o,o) ~ 0. Let o ± = {u I (u,v) = 0}, then since MD is one 
dimensional it follows that V = vD + v ±. Consider the ring Ro = {r e R I rv = 0, 
ro ± ~_ V'L}. Then R* ~ Ro and Ro is an irreducible ring of transformations of  v: 
Indeed, let ro = 0 then for every u e V, 0 = (rv,u) = (v,r*u) so that r*V ___ v ~. 
Also for r e R o ,  u e v  ±, 0 = (v, ru) = (r*v,u) since r v ± ~  v ±. Thus (r*v,v ±) = 0 

and ( r*v , v )=  (v, rv )= 0, which implies by the linearity that ( r * v , V ) =  0 hence 
the regularity implies that r*v = O, i.e. r* e R o. Next v ± is clearly Ro-faithful 
but also it  is an Ro-irreducible module: for if  ul,u2 e v ± choose r such that rv = 0 
and rul  = u2. By the preceding proof it follows that r * V e v  ~, and since R is a 
a primitive ring with a minimal left ideal we can choose r such that rV  is one 
dimensional, so that rV  = u2 D.  Indeed first choose arbitrary r e R by the den- 
sity theorem, and then e e R  such that eu2 = u2 and eV  = u2D, then er is the 
required element. Thus rv = 0 and rv±~_ u2D ~ v ±, i.e., r e R  o. The symmetric 
elements of Ro will satisfy an identity of  degree d - 1 ;  for choose x~ = st, 
i = 1 , . . . ,d  - 1 arbitrary symmetric elements in Ro and sd = urv* + vr*u* for 

arbitrary r e R ,  u e v J" then 0 = p[st , . . . , sd]v = P l [ S t ' " s d - 1 ] u r ( v , v )  since all 
sly = 0, i < d - 1 and sdv = ur(v,v) as u*v = (u,v)  = 0. This being true for all 
r e R implies pt[s l  ... Sd-t]U = 0 for all u e v ± hence Pl[St "'" sd-t]  = 0. Hence 
by induction (vt :D) < d - 1, but then V = vD + v ± yields that (V:D) < d. 

The second case where we have for all v e V, (v,v) = 0 will follow similarly, 
but by passing to a ring Ro whose symmetric elements satisfy an identity of  degree 

__<d-2.  

Here we choose two elements v l ,v  2 such that (vt,v2) ~ 0 and by assumption 
(v~,v~)=0. Let V o = v t D + v 2  D and consider V d = { u [ ( v ~ , u ) = O } .  Then 

V = Vo + V~-. The ring Ro will now be defined as the set {r I rV~ ~_ V~, rVo = 0}. 
Again R* _ Ro, for if  r e R o  for every we V, 0 = (rye, w) = (vi,r*w) = 0 so that 
r*V ~_ V~ and 0 = (v~,ru) = (r*vi,u) for every u e V~-. Thus (r*v~,V) = 0 which 

yields that r*Vo = 0, i.e., r* eRo .  Next Vo is an irreducible Ro-module and Ro 
acts faithfully on Vo (i.e., R o primitive). The second assertion is evident, for the 

first we choose ut ,u2  e V~ and r ~R such that rVo = 0 rut = u2, and since R 
has a minimal left ideal we may take r to be a 1.t. of  rank 1 namely, rV  = u2D, 

then r e Ro since r V ~ _  u2D ~ V~- and rVo = O. 
Apply now the following substitution: for arbitrary rt ,r2 e R  and u e V~ 

we set sd = vt rlv~ + v2r~v*and Sd- t = ur2v*+ v2r*u*, s~ e Ro for i = 1,2,. . . ,  d -  2. 
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= = 

= Po [s,"" s d_ 2] ur2(v2v,) rt(v2vl). 

Indeed, all s~s d = 0 except s d_ lsd also all sir 1 = 0, i < d - 2 ,  consequently, we have 
to consider only the monomials ending with Sd-ISdVx, which proves the pre- 
ceding result since (ray1)= O, and v*v 1 = (vzva) this being true for all r l , r  a e R 
and since (vlv2)~ 0, yields that p[sl,...,sa_2]u = 0 for every u e Vd. Hence 
p[sl ," ' ,sd-2] = 0 in Ro. Thus, by induction: (Vo:D)< d - 2 ,  as V =  Vo + V~ 
it follows, (V:D) =< d. The case d = 1,2 are already included in the preceding 
proofs, and the induction is completed. 

Thus we may assume that R acts on a finite dimensional vector space and so 
R = Dk. Let C be the center of R, then the involution of R induces an automor- 
phism c ~ 6 of degree _< 2 in C, and let Co be the invariant field. Let F _c D 
be a maximal commutative subfield of D. Consider the ring R ®Co F = R as 
acting on V by setting (r ® ~)v = r w .  The centralizer of -~ in V is then F.  De- 
fine in /~ the involution (Y.r i ® dr)* = Y~r* ® di then since we took the tensor 
product with respect to the invariant field Co this is well defined, since 
(rc ® d~)* = (r ® cd~)*; and since p[xl "" xd] is multilinear, also the symmetric 
elements of /~ satisfy p[x] = O. Now let P = K e r [ ~  HomE(V, V)], and if 
P* ~ P it follows by the first case of primitive rings that RIP satisfies the identity 
s2drx] =0, and since-g-~R/P is an injection on the elements of R it follows thatR 
satisfies this identity. (This will be the case Co # C.) If P* ~ P, then by the second 
case of primitive ring it follows that (V: F) <- d and, therefore, R is isomorphic with 
a subring of Hom~(V, V) which satisfy S2d[x] = O. This concludes the proof for 
primitive rings, from which the semi-primitive case follows, since every primitive 
homomorphic image of satisfies S2d[x] = 0 and R is a subdirect sum of its 
primitive images. 

The semi-prime case follows now by embedding R in R[t] the ring of poly- 
nomials in a commutative indeterminate t, and R[t] is semi-primitive, since 
it follows by Theorem 2 that R has no nil ideals. 

The final part of the proof of Theorem 5 is the obvious observation that 
L(R)* = L(R), for an ideal P is prime if and only if P* is prime and L(R) = c~P; 
and so R/L(R) is semi-prime satisfying p[x] = 0 by remark A. Thus R/L(R) 
satisfies S2a[x] = 0, Theorem 2 implies that L ( R ) ~  NI(R ) so that we con- 
elude that (S2d[x]) d = 0 in R]NI(R), and the proof of Theorem 5 is completed. 

4. Arbitrary rings. 

THEOREM 6. I f  R is a ring with involution, such that its set S of  symmetric 
elements satisfies a polynomial identity of  degree d, then R satisfies an identity 
s2drx] m= 0 for  some m.  

Proof. Consider the complete product of the ring/~ = IIR~ where ~ ranges 
over the set R 2d of all 2d-tuple (rt, '",r2d) of elements of R, and R~= R for 
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all 0~./~ is also a ring with an involution by setting f*(~) = l'f(ct)]* for all = ~/~. 
Since for every component p[x] = 0 is satisfied by its symmetric elements--the same 

will hold in R. So it follows that S2d [ f~ ," ' f2d]  e L(/~) for every f~ e/~. Fixing 
f l ,  "",f2d, the element S2d[fJ belonging to the lower radical is nil--hence, 
S2a[ft-I m = 0. The way we choose the f~ is that fi  picks the i-th component of 

= ( r l , . . . ,  r2d), i.e., f~(ct) = ri. Thus S2d[fi]m(00 -m- S2a[rl,..-, r2a" ] m= 0. This 
being true for all ~ means that S2d[Xl,. . . ,  X2d] m = 0 holds identically in R.  Q.E.D. 

We conclude with 

REMARK B. The integer m such that S2d[X] ra.~- 0 holds in R is bounded by 
some integer depending on the identity p[x] and not on R.  If  this were not 
the case one would have rings R I satisfying p = 0  and S2d[x] m' = 0 with minimal 
m~ and m t < m= < --.. But then l'IR l will satisfy p = 0 and will not satisfy any 
S~'d = 0. Contradiction. 
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